Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Chromosome Res ; 31(1): 11, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36842155

RESUMO

Alterations of human karyotype caused by chromosomal rearrangements are often associated with considerable phenotypic effects. Studying molecular mechanisms underlying these effects requires an efficient and scalable experimental model. Here, we propose a Cre-LoxP-based approach for the generation of combinatorial diversity of chromosomal rearrangements. We demonstrate that using the developed system, both intra- and inter-chromosomal rearrangements can be induced in the human haploid HAP1 cells, although the latter is significantly less effective. The obtained genetically modified HAP1 cell line can be used to dissect genomic effects associated with intra-chromosomal structural variations.


Assuntos
Cromossomos , Rearranjo Gênico , Recombinação Genética , Humanos , Cromossomos/genética , Cromossomos/metabolismo , Rearranjo Gênico/genética , Rearranjo Gênico/fisiologia , Integrases/genética , Integrases/metabolismo , Recombinação Genética/genética , Recombinação Genética/fisiologia , Linhagem Celular
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385329

RESUMO

The pairing of homologous chromosomes represents a critical step of meiosis in nearly all sexually reproducing species. In many organisms, pairing involves chromosomes that remain apparently intact. The mechanistic nature of homology recognition at the basis of such pairing is unknown. Using "meiotic silencing by unpaired DNA" (MSUD) as a model process, we demonstrate the existence of a cardinally different approach to DNA homology recognition in meiosis. The main advantage of MSUD over other experimental systems lies in its ability to identify any relatively short DNA fragment lacking a homologous allelic partner. Here, we show that MSUD does not rely on the canonical mechanism of meiotic recombination, yet it is promoted by REC8, a conserved component of the meiotic cohesion complex. We also show that certain patterns of interspersed homology are recognized as pairable during MSUD. Such patterns need to be colinear and must contain short tracts of sequence identity spaced apart at 21 or 22 base pairs. By using these periodicity values as a guiding parameter in all-atom molecular modeling, we discover that homologous DNA molecules can pair by forming quadruplex-based contacts with an interval of 2.5 helical turns. This process requires right-handed plectonemic coiling and additional conformational changes in the intervening double-helical segments. Our results 1) reconcile genetic and biophysical evidence for the existence of direct homologous double-stranded DNA (dsDNA)-dsDNA pairing, 2) identify a role for this process in initiating RNA interference, and 3) suggest that chromosomes can be cross-matched by a precise mechanism that operates on intact dsDNA molecules.


Assuntos
Cromossomos Fúngicos/fisiologia , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Meiose/fisiologia , Neurospora crassa/fisiologia , Recombinação Genética/fisiologia , Cromossomos Fúngicos/genética , Meiose/genética , Recombinação Genética/genética
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883277

RESUMO

The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose/fisiologia , Recombinação Genética/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Rad51 Recombinase/metabolismo , Recombinação Genética/genética
4.
Sci Rep ; 11(1): 8214, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859263

RESUMO

Conditional creER-mediated gene inactivation or gene induction has emerged as a robust tool for studying gene functions in mouse models of tissue development, homeostasis, and regeneration. Here, we present a method to conditionally induce cre recombination in the mouse calvarial bone while avoiding systemic recombination in distal bones. To test our method, we utilized Prx1creER-egfp;td-Tomato mice and delivered 4-hydroxytamoxifen (4-OHT) to the mouse calvaria, subperiosteally. First, we showed that two calvaria subperiosteal injections of 10 µg of 4-OHT (3.3 mg of 4-OHT/kg of body weight) can induce local recombination as efficiently as two intraperitoneal systemic injections of 200 µg of tamoxifen (70 mg of tamoxifen/kg of body weight). Then, we studied the recombination efficiency of various subperiosteal calvaria dosages and found that two subperiosteal injections of 5 µg 4-OHT (1.65 mg of 4-OHT/kg of body weight) uphold the same recombination efficiency observed with higher dosages. Importantly, the result indicated that the low dosage does not induce significant systemic recombination in remote skeletal tissues. With the proposed local low dosage protocol, the recombination efficiency at the injection site (calvarial bone) reached 94%, while the recombination efficiency at the mandible and the digits was as low as the efficiency measured in control animals.


Assuntos
Integrases/metabolismo , Receptores de Estrogênio/genética , Recombinação Genética/fisiologia , Crânio/metabolismo , Animais , Osso e Ossos/metabolismo , Ativação Enzimática/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação de Genes/métodos , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Receptores de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
5.
PLoS Biol ; 19(1): e3001067, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406066

RESUMO

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Assuntos
Ciclo Celular/fisiologia , Fator de Acasalamento/fisiologia , Meiose/fisiologia , Zigoto/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos/fisiologia , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Meiose/genética , Organismos Geneticamente Modificados , Ploidias , Proteínas de Ligação a RNA/fisiologia , Recombinação Genética/fisiologia , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
6.
Neurosci Lett ; 742: 135456, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33290837

RESUMO

A bitter substance induces specific orofacial and somatic behavioral reactions such as gapes in mice as well as monkeys and humans. These reactions have been proposed to represent affective disgust, and therefore, understanding the neuronal basis of the reactions would pave the way to understand affective disgust. It is crucial to identify and access the specific neuronal ensembles that are activated by bitter substances, such as quinine, the intake of which induces disgust reactions. However, the method to access the quinine-activated neurons has not been fully established yet. Here, we show evidence that a targeted recombination in active populations (TRAP) method, induces genetic recombination in the quinine-activated neurons in the central nucleus of the amygdala (CeA). CeA is one of the well-known emotional centers of the brain. We found that the intraoral quinine infusion, that resulted in disgust reactions, increased both cFos-positive cells and Arc-positive cells in the CeA. By using Arc-CreER;Ai3 TRAP mice, we induced genetic recombination in the quinine-activated neurons and labelled them with fluorescent protein. We confirmed that the quinine-TRAPed fluorescently-labelled cells preferentially coexpressed Arc after quinine infusion. Our results suggest that the TRAP method can be used to access specific functional neurons in the CeA.


Assuntos
Núcleo Central da Amígdala/metabolismo , Asco , Neurônios/metabolismo , Recombinação Genética/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Núcleo Central da Amígdala/química , Núcleo Central da Amígdala/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Neurônios/efeitos dos fármacos , Quinina/administração & dosagem , Recombinação Genética/efeitos dos fármacos , Sacarina/administração & dosagem , Paladar/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos
7.
PLoS Pathog ; 16(12): e1009181, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370413

RESUMO

Clostridioides difficile is the major worldwide cause of antibiotic-associated gastrointestinal infection. A pathogenicity locus (PaLoc) encoding one or two homologous toxins, toxin A (TcdA) and toxin B (TcdB), is essential for C. difficile pathogenicity. However, toxin sequence variation poses major challenges for the development of diagnostic assays, therapeutics, and vaccines. Here, we present a comprehensive phylogenomic analysis of 8,839 C. difficile strains and their toxins including 6,492 genomes that we assembled from the NCBI short read archive. A total of 5,175 tcdA and 8,022 tcdB genes clustered into 7 (A1-A7) and 12 (B1-B12) distinct subtypes, which form the basis of a new method for toxin-based subtyping of C. difficile. We developed a haplotype coloring algorithm to visualize amino acid variation across all toxin sequences, which revealed that TcdB has diversified through extensive homologous recombination throughout its entire sequence, and formed new subtypes through distinct recombination events. In contrast, TcdA varies mainly in the number of repeats in its C-terminal repetitive region, suggesting that recombination-mediated diversification of TcdB provides a selective advantage in C. difficile evolution. The application of toxin subtyping is then validated by classifying 351 C. difficile clinical isolates from Brigham and Women's Hospital in Boston, demonstrating its clinical utility. Subtyping partitions TcdB into binary functional and antigenic groups generated by intragenic recombinations, including two distinct cell-rounding phenotypes, whether recognizing frizzled proteins as receptors, and whether it can be efficiently neutralized by monoclonal antibody bezlotoxumab, the only FDA-approved therapeutic antibody. Our analysis also identifies eight universally conserved surface patches across the TcdB structure, representing ideal targets for developing broad-spectrum therapeutics. Finally, we established an open online database (DiffBase) as a central hub for collection and classification of C. difficile toxins, which will help clinicians decide on therapeutic strategies targeting specific toxin variants, and allow researchers to monitor the ongoing evolution and diversification of C. difficile.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Enterotoxinas/genética , Evolução Molecular , Recombinação Genética/fisiologia , Variação Antigênica/genética , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/classificação , Clostridioides difficile/patogenicidade , Bases de Dados Genéticas , Enterotoxinas/química , Variação Genética , Genoma Bacteriano/genética , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Análise de Sequência de DNA
8.
Methods Mol Biol ; 2171: 249-255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705647

RESUMO

Intestinal stem cells are responsible for tissue renewal. The study of stem cell properties has become a major challenge in the field. We describe here a method based on Cre recombinase inducible lentivirus vectors that permits delivery of transgenes, either for overexpression or knockdown, in primary stem cells that can be cultured in an 3D intestinal organoid system. This method is an excellent approach for genetic manipulation and can complement in vivo transgenic experiments.


Assuntos
Integrases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Integrases/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Organoides/citologia , Organoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Recombinação Genética/genética , Recombinação Genética/fisiologia
9.
PLoS Genet ; 16(5): e1008619, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369493

RESUMO

Coalescent simulations are widely used to examine the effects of evolution and demographic history on the genetic makeup of populations. Thanks to recent progress in algorithms and data structures, simulators such as the widely-used msprime now provide genome-wide simulations for millions of individuals. However, this software relies on classic coalescent theory and its assumptions that sample sizes are small and that the region being simulated is short. Here we show that coalescent simulations of long regions of the genome exhibit large biases in identity-by-descent (IBD), long-range linkage disequilibrium (LD), and ancestry patterns, particularly when the sample size is large. We present a Wright-Fisher extension to msprime, and show that it produces more realistic distributions of IBD, LD, and ancestry proportions, while also addressing more subtle biases of the coalescent. Further, these extensions are more computationally efficient than state-of-the-art coalescent simulations when simulating long regions, including whole-genome data. For shorter regions, efficiency can be maintained via a hybrid model which simulates the recent past under the Wright-Fisher model and uses coalescent simulations in the distant past.


Assuntos
Algoritmos , Sequência de Bases/fisiologia , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Estudos de Coortes , Simulação por Computador , Evolução Molecular , Genoma/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Desequilíbrio de Ligação , Recombinação Genética/fisiologia , Tamanho da Amostra
10.
J Neuroimmunol ; 344: 577245, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335319

RESUMO

BACKGROUND: The Cre-lox system is a non-dynamic method of gene modification and characterization. Promoters thought to be relatively cell-specific are utilized for generation of cell-lineage-specific gene modifications. METHODS: CD11c.Cre+ITGA4fl/fl mice were generated to abolish the expression of ITGA (α4-integrin) in CD11c+ cells. Ex vivo flow cytometry studies were used to assess the expression of cellular surface markers in different lymphoid compartments and leukocytes subsets after Cre-mediated recombination. RESULTS: A significant reduction of α4-integrin expression among CD11c+- cells was achieved in CD11c.Cre+ITGA4fl/fl mice in primary and secondary lymphoid tissues. A similar reduction in the expression of α4-integrin was also observed in CD11c- cells. CONCLUSION: Cre-lox-mediated cell lineage-specific gene deletion is limited by the transient expression of recombination regulating sequences in hematopoietic cell lines. These methodological issues indicate the need to consider when to employ non-dynamic DNA recombination models in animal models of CNS autoimmunity. An experimental algorithm to address the biological complexities of non-dynamic gene recombination is provided.


Assuntos
Antígeno CD11c/biossíntese , Antígeno CD11c/genética , Linhagem da Célula/fisiologia , Integrinas/biossíntese , Integrinas/genética , Recombinação Genética/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Genes Dev ; 34(5-6): 395-397, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122967

RESUMO

To induce cell type-specific forms of gene regulation, pioneer factors open tightly packed, inaccessible chromatin sites, enabling the molecular machinery to act on functionally significant information encoded in DNA. While previous studies of pioneer factors have revealed their functions in transcriptional regulation, pioneer factors that open chromatin for other physiological events remain undetermined. In this issue of Genes & Development, Spruce and colleagues (pp. 398-412) report the functional significance of a "pioneer complex" in mouse meiotic recombination. This complex, comprised of the zinc finger DNA-binding protein PRDM9 and the SNF2 family chromatin remodeler HELLS, exposes nucleosomal DNA to designate the sites of DNA double-strand breaks that initiate meiotic recombination. Both HELLS and PRDM9 are required for the determination of these recombination hot spots. Through the identification of a pioneer complex for meiotic recombination, this study broadens the conceptual scope of pioneer factors, indicating their functional significance in biological processes beyond transcriptional regulation.


Assuntos
Meiose/fisiologia , Recombinação Genética/fisiologia , Animais , DNA Helicases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo
13.
CRISPR J ; 2(6): 376-394, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742433

RESUMO

Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free in vitro assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in Escherichia coli. This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional/métodos , Transposases/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Elementos de DNA Transponíveis/fisiologia , Endonucleases/genética , Escherichia coli/genética , Edição de Genes/métodos , Recombinação Genética/genética , Recombinação Genética/fisiologia , Transposases/genética
14.
Nucleic Acids Res ; 47(22): 11691-11708, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31617566

RESUMO

We have explored the meiotic roles of cohesin modulators Pds5 and Rad61/Wapl, in relation to one another, and to meiotic kleisin Rec8, for homolog pairing, all physically definable steps of recombination, prophase axis length and S-phase progression, in budding yeast. We show that Pds5 promotes early steps of recombination and thus homolog pairing, and also modulates axis length, with both effects independent of a sister chromatid. [Pds5+Rec8] promotes double-strand break formation, maintains homolog bias for crossover formation and promotes S-phase progression. Oppositely, the unique role of Rad61/Wapl is to promote non-crossover recombination by releasing [Pds5+Rec8]. For this effect, Rad61/Wapl probably acts to maintain homolog bias by preventing channeling into sister interactions. Mysteriously, each analyzed molecule has one role that involves neither of the other two. Overall, the presented findings suggest that Pds5's role in maintenance of sister chromatid cohesion during the mitotic prophase-analogous stage of G2/M is repurposed during meiosis prophase to promote interactions between homologs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico , Meiose , Recombinação Genética/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico/genética , Segregação de Cromossomos , Cromossomos Fúngicos , Meiose/genética , Organismos Geneticamente Modificados , Ligação Proteica , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã/genética
16.
Nat Commun ; 10(1): 3821, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444359

RESUMO

Meiosis is the specialized cell division during which parental genomes recombine to create genotypically unique gametes. Despite its importance, mammalian meiosis cannot be studied in vitro, greatly limiting mechanistic studies. In vivo, meiocytes progress asynchronously through meiosis and therefore the study of specific stages of meiosis is a challenge. Here, we describe a method for isolating pure sub-populations of nuclei that allows for detailed study of meiotic substages. Interrogating the H3K4me3 landscape revealed dynamic chromatin transitions between substages of meiotic prophase I, both at sites of genetic recombination and at gene promoters. We also leveraged this method to perform the first comprehensive, genome-wide survey of histone marks in meiotic prophase, revealing a heretofore unappreciated complexity of the epigenetic landscape at meiotic recombination hotspots. Ultimately, this study presents a straightforward, scalable framework for interrogating the complexities of mammalian meiosis.


Assuntos
Núcleo Celular/metabolismo , Epigênese Genética/fisiologia , Código das Histonas/fisiologia , Histonas/genética , Meiose/fisiologia , Acetilação , Animais , Núcleo Celular/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla , Metilação de DNA/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Recombinação Genética/fisiologia , Testículo/citologia
17.
PLoS Biol ; 17(6): e3000275, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170137

RESUMO

The origin and subsequent maintenance of sex and recombination are among the most elusive and controversial problems in evolutionary biology. Here, we propose a novel hypothesis, suggesting that sexual reproduction not only evolved to reduce the negative effects of the accumulation of deleterious mutations and processes associated with pathogen and/or parasite resistance but also to prevent invasion by transmissible selfish neoplastic cheater cells, henceforth referred to as transmissible cancer cells. Sexual reproduction permits systematic change of the multicellular organism's genotype and hence an enhanced detection of transmissible cancer cells by immune system. Given the omnipresence of oncogenic processes in multicellular organisms, together with the fact that transmissible cancer cells can have dramatic effects on their host fitness, our scenario suggests that the benefits of sex and concomitant recombination will be large and permanent, explaining why sexual reproduction is, despite its costs, the dominant mode of reproduction among eukaryotes.


Assuntos
Recombinação Genética/fisiologia , Reprodução/genética , Reprodução/fisiologia , Animais , Evolução Biológica , Transformação Celular Neoplásica/genética , Eucariotos , Genótipo , Humanos , Recombinação Genética/genética , Seleção Genética/genética , Comportamento Sexual/fisiologia
18.
Biol Reprod ; 101(2): 347-359, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074776

RESUMO

A major challenge in medical genetics is to characterize variants of unknown significance (VUS). Doing so would help delineate underlying causes of disease and the design of customized treatments. Infertility has presented an especially difficult challenge with respect to not only determining if a given patient has a genetic basis, but also to identify the causative genetic factor(s). Though genome sequencing can identify candidate variants, in silico predictions of causation are not always sufficiently reliable so as to be actionable. Thus, experimental validation is crucial. Here, we describe the phenotype of mice containing a non-synonymous (proline-to-threonine at position 306) change in Spo11, corresponding to human SNP rs185545661. SPO11 is a topoisomerase-like protein that is essential for meiosis because it induces DNA double stranded breaks (DSBs) that stimulate pairing and recombination of homologous chromosomes. Although both male and female Spo11P306T/P306T mice were fertile, they had reduced sperm and oocytes, respectively. Spermatocyte chromosomes exhibited synapsis defects (especially between the X and Y chromosomes), elevated apoptotic cells, persistent markers of DSBs, and most importantly, fewer Type 1 crossovers that causes some chromosomes to have none. Spo11P306T/- mice were sterile and made fewer meiotic DSBs than Spo11+/- animals, suggesting that the Spo11P306T allele is a hypomorph and likely is delayed in making sufficient DSBs in a timely fashion. If the consequences are recapitulated in humans, it would predict phenotypes of premature ovarian failure, reduced sperm counts, and possible increased number of aneuploid gametes. These results emphasize the importance of deep phenotyping in order to accurately assess the impact of VUSs in reproduction genes.


Assuntos
Endodesoxirribonucleases/metabolismo , Meiose/fisiologia , Oligospermia/genética , Reserva Ovariana/genética , Recombinação Genética/fisiologia , Alelos , Animais , Troca Genética , Endodesoxirribonucleases/genética , Feminino , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único
19.
Sci Rep ; 9(1): 4298, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862832

RESUMO

Human adenovirus (HAdV) group C are the common etiologic in infants with severe acute respiratory infections (SARI). In the study, we report that a novel recombinant HAdV-C group strain (SH2016) was isolated from an infant with SARI in Shanghai in Feb. 4, 2016. The whole-genome sequence of SH2016 strain was generated and compared to other HAdV genomes publicly available. The strain SH2016 genome contains 35,946 nucleotides and coded 40 putative proteins, which was divided into 11 regions. RDP and phylogenetic analyses of the complete genome showed that the SH2016 strain was arranged into a novel subtype and might be recombined with HAdV-1 and HAdV-2. Our finding indicated that the frequent recombination among the HAdV-C group played an important role in driving force for polymorphism of human HAdV-C group prevalent in Shanghai, China. Further epidemiological surveillance of HAdV-C group is necessary to explore whether the novel HAdV-C group will maintain long-term stability. And the pathogenicity and clinical characteristics of the novel HAdV-C group member should be done more.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/patogenicidade , Infecções por Adenoviridae/virologia , Adenovírus Humanos/classificação , Algoritmos , China , DNA Viral/genética , Genoma Viral/genética , Humanos , Filogenia , Recombinação Genética/genética , Recombinação Genética/fisiologia , Infecções Respiratórias/virologia , Sequenciamento Completo do Genoma
20.
Proc Natl Acad Sci U S A ; 116(3): 1033-1042, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598436

RESUMO

Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.


Assuntos
Replicação do DNA/fisiologia , DNA Viral/biossíntese , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Recombinação Genética/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Mutação , Mutação de Sentido Incorreto , Células Vero , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA